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Cleve’s
Corner

By Cleve Moler

from its SVD.  Take σ1 = 2, σ2 = 1/2, θ = π/6 
and φ = π/4. Let

               
U =

 (	 -cos θ	 sin θ )                          	 sin θ	 cos θ 

              
 ∑ = (	 σ1	 0  )                          	 0	 σ2 

            
   V = (	  -cos φ	 sin φ )                          	 sin φ	 cos φ 

The matrices U and V are rotations through 
angles θ and φ, followed by reflections in the 
first dimension. The matrix ∑ is a diagonal 
scaling transformation.  Generate A by 
computing

               A = U∑V T

You will find that

               
A = (	 1.4015	 -1.0480 )                        -	 .4009	 1.0133

This says that the matrix A can be gener-
ated by a rotation through 45° and a re-
flection, followed by independent scalings 
in each of the two coordinate directions 
by factors of 2 and 1/2, respectively, fol-
lowed by a rotation through 30° and an-
other reflection. 
The MATLAB function eigshow generates 
a figure that demonstrates the singular value 
decomposition of a 2-by-2 matrix.  Enter the 
statements

A = [1.4015  -1.0480;  

    -0.4009   1.0133]

eigshow(A)

Professor SVD
Stanford computer science professor Gene Golub has done more than anyone to  

make the singular value decomposition one of the most powerful and widely used  

tools in modern matrix computation.

The SVD is a recent development.  Pete 
Stewart, author of the 1993 paper “On 
the Early History of the Singular Value 
Decomposition”, tells me that the term 
valeurs singulières was first used by Emile 
Picard around 1910 in connection with in-
tegral equations. Picard used the adjective 
“singular” to mean something exceptional 
or out of the ordinary. At the time, it had 

nothing to do with singular matrices.  
When I was a graduate student in the ear-
ly 1960s, the SVD was still regarded as a 
fairly obscure theoretical concept. A book 
that George Forsythe and I wrote in 1964 
described the SVD as a nonconstructive 
way of characterizing the norm and con-
dition number of a matrix. We did not yet 
have a practical way to actually compute 

it. Gene Golub and W. Kah-
an published the first effec-
tive algorithm in 1965. A 
variant of that algorithm, 
published by Gene Golub 
and Christian Reinsch in 
1970 is still the one we use 
today. By the time the first 
MATLAB appeared, around 
1980, the SVD was one of its 
highlights.  
We can generate a 2-by-2  
example by working back-
wards, computing a matrix 

The singular value  

decomposition (SVD),  

is a matrix factorization  

with a wide range of  

interesting applications.

Gene Golub’s license plate, photographed by Professor P. M. Kroonenberg of Leiden University.  
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Click the SVD button and move the mouse 
around.  You will see Figure 1, but with dif-
ferent labels.

The green circle is the unit circle in the 
plane. The blue ellipse is the image of this 
circle under transformation by the matrix 
A. The green vectors, v1 and v2, which are 
the columns of V, and the blue vectors, u1 
and u2, which are the columns of U, are two 
different orthogonal bases for two-dimen-
sional space. The columns of V are rotated 
45° from the axes of the figure, while the 
columns of U2, which are the major and mi-
nor axes of the ellipse, are rotated 30°. The 
matrix A transforms v1 into σ1u1 and v2 into 
σ2u2. 
Let’s move on to m-by-n matrices. One of 
the most important features of the SVD is its 
use of orthgonal matrices. A real matrix U is 
orthogonal, or has orthonormal columns, if

	 U TU = I

This says that the columns of U are perpen-
dicular to each other and have unit length. 

Geometrically, transformations by orthogo-
nal matrices are generalizations of rotations 
and reflections; they preserve lengths and 
angles. Computationally, orthogonal matri-
ces are very desirable because they do not 
magnify roundoff or other kinds of errors. 
Any real matrix A, even a nonsquare one, can 
be written as the product of three matrices.

               A = U∑V T

The matrix U is orthogonal and has as 
many rows as A. The matrix V is orthogo-
nal and has as many columns as A. The 
matrix ∑ is the same size as A, but its only 
nonzero elements are on the main diago-
nal. The diagonal elements of ∑ are the sin-
gular values, and the columns of U and V 
are the left and right singular vectors.  
In abstract linear algebra terms, a matrix 
represents a linear transformation from 
one vector space, the domain, to another, 
the range. The SVD says that for any lin-
ear transformation it is possible to choose 
an orthonormal basis for the domain and 

a possibly different orthonormal basis for 
the range. The transformation becomes 
independent of scalings or dilatations in 
each coordinate direction.
The rank of a matrix is the number of lin-
early independent rows, which is the same 
as the number of linearly independent 
columns. The rank of a diagonal matrix 
is clearly the number of nonzero diagonal 
elements. Orthogonal transforms preserve 
linear independence. Thus, the rank of any 
matrix is the number of nonzero singular 
values. In MATLAB, enter the statement

type rank

to see how we choose a tolerance and 
count nonnegligible singular values.
Traditional courses in linear algebra make 
considerable use of the reduced row ech-
elon form (RREF), but the RREF is an  un-
reliable tool for computation in the face of 
inexact data and arithmetic. The SVD can 
be regarded as a modern, computationally 
powerful replacement for the RREF.
A square diagonal matrix is nonsingular if, 
and only if, its diagonal elements are nonzero. 
The SVD implies that any square matrix is 
nonsingular if, and only if, its singular values 
are nonzero. The most numerically reliable 
way to determine whether matrices are sin-
gular is to test their singular values. This is far 
better than trying to compute determinants, 
which have atrocious scaling properties.
With the singular value decomposition, 
the system of linear equations

	 Ax = b

becomes

	 U∑V Tx = b

The solution is

	 x = V∑ -1U Tb

Multiply by an orthogonal matrix, divide by 
the singular values, then multiply by another 
orthogonal matrix. This is much more
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Figure1. SVD figure produced by eigshow.
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computational work than Gaussian elimina-
tion, but it has impeccable numerical prop-
erties. You can judge whether the singular 
values are small enough to be regarded as 
negligible, and if they are, analyze the rel-
evant singular system.
Let Ek denote the outer product of the  
k-th left and right singular vectors, that is

	 Ek = ukvk
T

Then A can be expressed as a sum of rank-1 
matrices,
	           n
	 A = ∑ σk Ek

	        k=1

If you order the singular values in decreasing 
order, σ1> σ2 > ... >  σn , and truncate the sum 
after r terms, the result is a rank-r approxima-
tion to the original matrix. The error in the 
approximation depends upon the magnitude 
of the neglected singular values. When you 
do this with a matrix of data that has been 
centered, by subtracting the mean of each 
column from the entire column, the pro-
cess is known as principal component analy-
sis (PCA). The right singular vectors, vk, are 

Figure 2. Rank 12, 50, and 120 approximations to a rank 598 color photo of Gene Golub.

the components, and the scaled left singular 
vectors, σkuk, are the scores. PCAs  are usually 
described in terms of the eigenvalues and ei-
genvectors of the covariance matrix, AAT, but 
the SVD approach sometimes has better nu-
merical properties.
SVD and matrix approximation are often 
illustrated by approximating images. Our 
example starts with the photo on Gene 
Golub’s Web page (Figure 2). The image 
is 897-by-598 pixels. We stack the red, 
green, and blue JPEG components verti-
cally to produce a 2691-by-598 matrix. 
We then do just one SVD computation. 
After computing a low-rank approxima-
tion, we repartition the matrix into RGB 
components. With just rank 12, the colors 
are accurately reproduced and Gene is 
recognizable, especially if you squint at the 
picture to allow your eyes to reconstruct 
the original image. With rank 50, you 
can begin to read the mathematics on the 
white board behind Gene. With rank 120, 
the image is almost indistinguishable from 
the full rank 598. (This is not a particularly 
effective image compression technique. In 
fact, my friends in image processing call it 
“image degradration.” )

So far in this column I have hardly men-
tioned eigenvalues. I wanted to show that it 
is possible to discuss singular values without 
discussing eigenvalues—but, of course, the 
two are closely related. In fact, if A is square, 
symmetric, and positive definite, its singular 
values and eigenvalues are equal, and its left 
and right singular vectors are equal to each 
other and to its eigenvectors. More gener-
ally, the singular values of A are the square 
roots of the eigenvalues of ATA or AAT.
Singular values are relevant when the ma-
trix is regarded as a transformation from 
one space to a different space with pos-
sibly different dimensions. Eigenvalues 
are relevant when the matrix is regarded 
as a transformation from one space into 
itself—as, for example, in linear ordinary 
differential equations.
Google finds over 3,000,000 Web pages 
that mention “singular value decomposi-
tion” and almost 200,000 pages that men-
tion “SVD MATLAB.”  I knew about a few 
of these pages before I started to write this 
column. I came across some other interest-
ing ones as I surfed around.
Professor SVD made all of this, and much 
more, possible.  Thanks, Gene.  7
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■ �The first Google hit on “protein svd” is “Protein Substate Mod-
eling and Identification Using the SVD,” by Tod Romo at Rice 
University. The site provides an electronic exposition of the 
use of SVD in the analysis of the structure and motion of pro-
teins, and includes some gorgeous graphics.
bioc.rice.edu/~tromo/Sprez/toc.html

■ �Los Alamos biophysicists Michael Wall, Andreas Rechsteiner, and 
Luis Rocha provide a good online reference about SVD and PCA, 
phrased in terms of applications to gene expression analysis.
public.lanl.gov/mewall/kluwer2002.html 

■ �“Representing cyclic human motion using functional analysis” 
(2005), by Dirk Ormoneit, Michael Black, Trevor Hastie, and 
Hedvig Kjellstrom, describes techniques involving Fourier analy-
sis and principal component analysis for analyzing and modeling 
motion-capture data from activities such as walking.  
www.csc.kth.se/~hedvig/publications/ivc_05.pdf

■ �A related paper is “Decomposing biological motion: a frame-
work for analysis and synthesis of human gait patterns,” 
(2002), by Nicholaus Troje. Troje’s work is the basis for an “ei-
genwalker” demo. 
www.journalofvision.org/2/5/2   
www.mathworks.com/moler/ncm/walker.m

■ �A search at the US Patent and Trademark Office Web page lists 
1,197 U.S. patents that mention “singular value decomposi-
tion.” The oldest, issued in 1987, is for “A fiber optic inspection 
system for use in the inspection of sandwiched solder bonds 
in integrated circuit packages”. Other titles include “Compres-
sion of surface light fields”, “Method of seismic surveying”, 
“Semantic querying of a peer-to-peer network”, “Biochemical 
markers of brain function”, and “Diabetes management.”
www.uspto.gov/patft

A Few Search Results for  
“Singular Value Decomposition” 

■ �The Wikipedia pages on SVD and PCA are quite good and  
contain a number of useful links, although not to each other.  
en.wikipedia.org/wiki/Singular_value_decomposition 

en.wikipedia.org/wiki/Principal_component_analysis

■ �Rasmus Bro, a professor at the Royal Veterinary and Agri-
cultural University in Denmark, and Barry Wise, head of Ei-
genvector Research in Wenatchee, Washington, both do che-
mometrics using SVD and PCA. One example involves the 
analysis of the absorption spectrum of water samples from a 
lake to identify upstream sources of pollution.
www.models.kvl.dk/users/rasmus

www.eigenvector.com

■ �Tammy Kolda and Brett Bader, at Sandia National Labs in Liver-
more, ca, developed the Tensor Toolbox for MATLAB, which 
provides generalizations of PCA to multidimensional data sets.
csmr.ca.sandia.gov/~tgkolda/TensorToolbox

■ �In 2003, Lawrence Sirovich of the Mount Sinai School of Medicine 
published “A pattern analysis of the second Rehnquist U.S. Supreme 
Court” in the Proceedings of the US National Academy of Sciences. 
His paper led to articles in the New York Times and the Washington 
Post because it provides a nonpolitical, phenomenological model of 
court decisions. Between 1994 and 2002, the court heard 468 cases. 
Since there are nine justices, each of whom takes a majority or mi-
nority position on each case, the data is a 468-by-9 matrix of +1s 
and -1s. If the judges had made their decisions by flipping coins, this 
matrix would almost certainly have rank 9. But Sirovich found that 
the third singular value is an order of magnitude smaller than the 
first one, so the matrix is well approximated by a matrix of rank 2. 
In other words, most of the court’s decisions are close to being in a 
two-dimensional subspace of all possible decisions.  
www.pnas.org/cgi/reprint/100/13/7432  

■ �Latent Semantic Indexing involves the use of SVD with term-
document matrices to perform document retrieval.  For ex-
ample, should a search for “singular value” also look for “eigen-
value”?  See a 1999 SIAM Review paper by Michael Berry, Zlato 
Drmac, and Liz Jessup, “Matrices, Vector Spaces, and Informa-
tion Retrieval.”
epubs.siam.org/SIREV/volume-41/art_34703.html

Resources

4 �On the Early History of the Singular Value Decomposition 
locus.siam.org/SIREV/volume-35/art_1035134.html

4 �Cleve’s Corner Collection 
www.mathworks.com/res/cleve


